Hiện nay, nhu cầu mua hàng trực tuyến của người tiêu dùng ngày càng tăng mạnh, để đáp ứng sự hài lòng của người sử dụng, các nhà cung cấp dịch vụ đã đưa ra nhiều giải pháp để hỗ trợ người sử dụng tìm kiếm các mặt hàng tốt nhất mà họ đang cần mua. Trong bài báo này, chúng tôi nghiên cứu đánh giá một số thuật toán dựa trên người dùng trong lọc cộng tác để đưa ra khuyến nghị cho người sử dụng. Kết quả khuyến nghị này được dựa trên những hành vi của những người sử dụng trước đó.Thí nghiệm đã được thực hiện trên hai bộ dữ liệu MovieLens và EachMovie. Kết quả cho thấy thuật toán Euclidean cho ra kết quả tốt nhất. Thuật toán này có thể ứng dụng trong các hệ thống bán hàng trực tuyến để nâng cao hiệu quả tìm kiếm sản phẩm. Từ khóa: Thuật toán dựa trên người dùng, chất lượng dịch vụ, hệ thống khuyến nghịNowadays, the consumers’ demand for online shopping is rapidly increasing. To satisfy the users’ satisfaction, service providers have come up with many solutions to support the users in searching for the best items. In this paper, we examine a number of user-based algorithms in collaborative filtering for user recommendations, which is based on the previous users’ behaviors. The experiment was performed on the two data sets called “MovieLens” and “EachMovie”. The results showed that the Euclidean algorithm produces the best results. This algorithm might be used in online trading systems to improve the searching efficiency. Keywords: User-based algorithms, quality of service, recommendation system.