ĐỘ DÀI ĐẠI SỐ LOBACHEVSKY TRONG HÌNH HỌC VỚI MÔ HÌNH NỬA MẶT PHẲNG POINCARÉ, MỘT SỐ ÁP DỤNG

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: vie

Ký hiệu phân loại:

Thông tin xuất bản: Tạp chí Khoa học- Trường Đại học Phú Yên, 2018

Mô tả vật lý: tr.1

Bộ sưu tập: Metadata

ID: 303270

In this paper we present the concept of axis and Lobachevskian algebraic distance of the directional segmental-arcs, and then find the relationship between the Lobachevskian line segments created by intercepting the axes on two fixed Lobachevskian lines. The results we obtained are Theorem 2.1, Theorem 2.2 and Corollary 2.3. Keywords: Lobachevskian algebraic distance, directional segmental-arc, Poincaré half-plane model, Lobachevskian line segment, Lobachevskian line.Trong bài báo này chúng tôi trình bày khái niệm về trục và độ dài đại số Lobachevsky của cung đoạn định hướng, sau đó tìm mối quan hệ giữa các đoạn thẳng Lobachevsky tạo nên khi cho các trục chắn lên hai đường thẳng Lobachevsky cố định. Kết quả mà chúng tôi thu được là Định lý 2.1, Định lý 2.2 và Hệ quả 2.3. Từ khóa: Độ dài đại số Lobachevsky, cung đoạn định hướng, mô hình nửa mặt phẳng Poincaré, đoạn thẳng Lobachevsky, đường thẳng Lobachevsky.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH