Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Chris Elbers

Ngôn ngữ: eng

Ký hiệu phân loại: 339.22 Distribution of aggregate personal income and wealth

Thông tin xuất bản: World Bank Group, Washington, DC, 2014

Mô tả vật lý:

Bộ sưu tập: Tài liệu truy cập mở

ID: 304034

This paper proposes a method for estimating distribution functions that are associated with the nested errors in linear mixed models. The estimator incorporates Empirical Bayes prediction while making minimal assumptions about the shape of the error distributions. The application presented in this paper is the small area estimation of poverty and inequality, although this denotes by no means the only application. Monte-Carlo simulations show that estimates of poverty and inequality can be severely biased when the non-normality of the errors is ignored. The bias can be as high as 2 to 3 percent on a poverty rate of 20 to 30 percent. Most of this bias is resolved when using the proposed estimator. The approach is applicable to both survey-to-census and survey-to-survey prediction.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH