Predicting Entrepreneurial Success is Hard

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: David McKenzie

Ngôn ngữ: eng

Ký hiệu phân loại: 650.1 Personal success in business

Thông tin xuất bản: Elsevier, 2019

Mô tả vật lý:

Bộ sưu tập: Tài liệu truy cập mở

ID: 306324

 We compare the absolute and relative performance of three approaches to predicting outcomes for entrants in a business plan competition in Nigeria: Business plan scores from judges, simple ad hoc prediction models used by researchers, and machine learning approaches. We find that i) business plan scores from judges are uncorrelated with business survival, employment, sales, or profits three years later
  ii) a few key characteristics of entrepreneurs such as gender, age, ability, and business sector do have some predictive power for future outcomes
  iii) modern machine learning methods do not offer noticeable improvements
  iv) the overall predictive power of all approaches is very low, highlighting the fundamental difficulty of picking competition winners.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH