Retooling Poverty Targeting Using Out-of-Sample Validation and Machine Learning

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Linden McBride

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: Published by Oxford University Press on behalf of the World Bank, 2020

Mô tả vật lý:

Bộ sưu tập: Tài liệu truy cập mở

ID: 307060

 Proxy means test (PMT) poverty targeting tools have become common tools for beneficiary targeting and poverty assessment where full means tests are costly. Currently popular estimation procedures for generating these tools prioritize minimization of in-sample prediction errors
  however, the objective in generating such tools is out-of-sample prediction.We present evidence that prioritizing minimal out-of-sample error, identified through cross-validation and stochastic ensemble methods, in PMT tool development can substantially improve the out-of-sample performance of these targeting tools.We take the United States Agency for International Development (USAID) poverty assessment tool and base data for demonstration of these methods
  however, the methods applied in this paper should be considered for PMT and other poverty-targeting tool development more broadly.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH