Ngày nay, một cá nhân hay tổ chức có thể dễ dàng có được một máy bay không người lái (drone) với mức ngân sách chấp nhận được. Với khả năng mang theo những vật liệu nổ, các camera và các vật phi pháp, các drone có thể trở thành các mối đe dọa về anh ninh đối với các tổ chức quân và dân sự. Phát hiện các drone xuất hiện trong các khu vực không được phép trở thành một bài toán cấp thiết. Bài báo này thực hiện các nghiên cứu thực nghiệm cho việc huấn luyện mạng nơ-ron tích chập nhiều tầng Faster R-CNN để Faster-CNN sau khi huấn luyện có thể phát hiện chính xác nhất các drone trong ảnh. Faster R-CNN sau khi huấn luyện có thể sử dụng trong các hệ thống phát hiện, cảnh báo và phòng thủ drone cho các khu vực nhạy cảm. Mạng Faster R-CNN được huấn luyện sử dụng tập dữ liệu ảnh với các hộp giới hạn gán nhãn drone và các lựa chọn huấn luyện khác nhau. Với các lựa chọn huấn luyện hợp lý được xác định thông qua các thực nghiệm, Faster R-CNN sau khi huấn luyện có thể phát hiện drone với độ chính xác trung bình lên tới 0,774, cao hơn 83% so với Fast R-CNN với độ chính xác trung bình là 0,420 trên cùng một tập dữ liệu.Nowadays, one individual or organization can easily get a drone with an affordable budget. With the ability of carrying explosive materials, cameras and illegal things, drones can become security threats to military and civilian organizations. The detection of drones appearing in unauthorized areas becomes an urgent problem. This paper conducts empirical studies on training the deep convolutional neural network Faster R-CNN so that Faster R-CNN after training can most accurately detect drones in images. The obtained Faster R-CNN after training can then be used in drone detection, warning and defense systems for sensitive areas. Faster R-CNN is trained using a dataset of images with drone labeled bounding boxes and different training options. With proper training options determined through experiments, Faster R-CNN after training can detect drones with the average precision up to 0.774, which is 83% higher than Fast R-CNN with the average precision of 0.420 on the same dataset.