Graphical models : foundations of neural computation

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael Irwin Jordan, Terrence J Sejnowski

Ngôn ngữ: eng

ISBN-13: 978-0262291200

Ký hiệu phân loại: 006.32 Neural nets (Neural networks)

Thông tin xuất bản: Cambridge, Massachusetts : MIT Press, 2001.

Mô tả vật lý: 1 PDF (xxiv, 421 pages) : , illustrations.

Bộ sưu tập: Tài liệu truy cập mở

ID: 313577

Graphical models use graphs to represent and manipulate joint probability distributions. They have their roots in artificial intelligence, statistics, and neural networks. The clean mathematical formalism of the graphical models framework makes it possible to understand a wide variety of network-based approaches to computation, and in particular to understand many neural network algorithms and architectures as instances of a broader probabilistic methodology. It also makes it possible to identify novel features of neural network algorithms and architectures and to extend them to more general graphical models.This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithms and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research.Contributors H. Attias, C. M. Bishop, B. J. Frey, Z. Ghahramani, D. Heckerman, G. E. Hinton, R. Hofmann, R. A. Jacobs, Michael I. Jordan, H. J. Kappen, A. Krogh, R. Neal, S. K. Riis, F. B. Rodr�iguez, L. K. Saul, Terrence J. Sejnowski, P. Smyth, M. E. Tipping, V. Tresp, Y. Weiss.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH