Is Random Forest a Superior Methodology for Predicting Poverty?

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Thomas Pave Sohnesen

Ngôn ngữ: eng

Ký hiệu phân loại: 362.57 Measures to prevent, protect against, limit effects of poverty

Thông tin xuất bản: World Bank, Washington, DC, 2016

Mô tả vật lý:

Bộ sưu tập: Tài liệu truy cập mở

ID: 314956

Random forest is in many fields of research a common method for data driven predictions. Within economics and prediction of poverty, random forest is rarely used. Comparing out-of-sample predictions in surveys for same year in six countries shows that random forest is often more accurate than current common practice (multiple imputations with variables selected by stepwise and Lasso), suggesting that this method could contribute to better poverty predictions. However, none of the methods consistently provides accurate predictions of poverty over time, highlighting that technical model fitting by any method within a single year is not always, by itself, sufficient for accurate predictions of poverty over time.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH