Hadamard matrices : constructions using number theory and algebra

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jennifer Seberry

Ngôn ngữ: eng

ISBN-13: 978-1119520276

Ký hiệu phân loại: 512.9434 Foundations of algebra

Thông tin xuất bản: Hoboken, New Jersey : Wiley, John Wiley & Sons, Inc., 2020.

Mô tả vật lý: 1 PDF (xxx, 321 pages) : , illustrations (some color)

Bộ sưu tập: Tài liệu truy cập mở

ID: 315185

"This book, which is the update of a 1992 survey by the same authors, summarizes some known constructions of Hadamard Matrices that are based on algebraic and number theoretic methods. Hadamard matrices are of practical use in signal processing and design experiments among other applications. This book begins with basic definitions, and is followed by a chapter on Gauss sums, Jacobi sums and relative Gauss sums. Next, the authors discuss plug-in matrices, arrays, and sequences. M-structure is covered next, along with Menon Hadamard differences sets and regular Handmard matrices. The authors then discuss Paley difference sets, skew-Handmard matrices, and skew Handmard differences sets. Finally, the book concludes with a discussion of asymptotic existence of Handmard matrices and more on maximal determinant matrices"-- Provided by publisher.
Includes bibliographical references and index.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH