BUILDING AND MINING GRAPH DATABASES FROM BIOMEDICAL HETEROGENEOUS NETWORKS

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dang Xuan Tho, Thi Huong Le, Duc Hung Vu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Tạp chí Khoa học - Trường Đại học Sư phạm Hà Nội: Khoa học Tự nhiên, 2020

Mô tả vật lý: tr.57

Bộ sưu tập: Metadata

ID: 321367

 All things and phenomena in life, especially in the fields of life and biomedical medicine, are more or less related, interact with each other, forming a heterogeneous network. Therefore, when studying an object, we need to consider the relationships around it. However, current research often focuses on a specific object, not considering other subjects that are influencing it. Therefore, this paper proposes to use a graph database as an approach to dealing with heterogeneous networks solving the biomedical problem. Experimental results on two heterogeneous networks, miRNA-disease, and autism-miRNA-protein, has drawn the network of interactions, the relationships in a very intuitive way
  shows the interaction between each specific object in the graph
  and finally, statistics the interaction levels and shows the top 5 diseases, the top 5 miRNAs with the most interaction in the data. From there, it can be seen that the proposed method improves efficiency, increases accuracy, and reduces execution time compared to the traditional way of storing data before.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH