Automatic Design of Decision-Tree Induction Algorithms [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Rodrigo C Barros, André C.P.L.F de Carvalho, Alex A Freitas

Ngôn ngữ:

ISBN-13: 978-3319142319

Ký hiệu phân loại: 006.312 Data mining

Thông tin xuất bản: Cham : Springer International Publishing : Imprint: Springer, 2015.

Mô tả vật lý: XII, 176 p. 18 illus. , online resource.

Bộ sưu tập: Tài liệu truy cập mở

ID: 327059

Presents a detailed study of the major design components that constitute a top-down decision-tree induction algorithm, including aspects such as split criteria, stopping criteria, pruning and the approaches for dealing with missing values. Whereas the strategy still employed nowadays is to use a 'generic' decision-tree induction algorithm regardless of the data, the authors argue on the benefits that a bias-fitting strategy could bring to decision-tree induction, in which the ultimate goal is the automatic generation of a decision-tree induction algorithm tailored to the application domain of interest. For such, they discuss how one can effectively discover the most suitable set of components of decision-tree induction algorithms to deal with a wide variety of applications through the paradigm of evolutionary computation, following the emergence of a novel field called hyper-heuristics. "Automatic Design of Decision-Tree Induction Algorithms" would be highly useful for machine learning and evolutionary computation students and researchers alike.
1. 
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH