MÔ HÌNH MẠNG NƠRON TÍCH CHẬP ĐA NHIỆM NHẬN DẠNG KHUÔN MẶT VÀ BIỂU CẢM CHO ỨNG DỤNG HỖ TRỢ GIÁM SÁT HỌC TRỰC TUYẾN

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Minh Chu, Thăng Long Dương, Quốc Chính Phí

Ngôn ngữ: vie

Ký hiệu phân loại:

Thông tin xuất bản: Tạp chí Khoa học Trường Đại học Mở Hà Nội,

Mô tả vật lý: tr.15

Bộ sưu tập: Metadata

ID: 331652

Hệ thống quản lý học tập trực tuyến (LMS) đang được phát triển mạnh, góp phần nâng cao chất lượng đào tạo. Tuy nhiên, việc tăng cường giám sát và hỗ trợ người học, theo dõi và quản lý học tập dựa trên các công nghệ hiện đại chưa được nghiên cứu sâu rộng. Đặc biệt là ứng dụng của công nghệ nhận dạng khuôn mặt và biểu cảm khuôn mặt giúp cho việc theo dõi, giám sát người học được tự động hoá cao độ và hỗ trợ kịp thời. Bằng việc ứng dụng công nghệ mạng nơron tích chập đa nhiệm (MTCNN), nghiên cứu này đề xuất một mô hình MTCNN nhằm thực hiện hai nhiệm vụ là nhận dạng khuôn mặt và nhận dạng biểu cảm khuôn mặt. Mô hình được thử nghiệm trên các tập dữ liệu công bố gồm CK+, OuluCASIA và dữ liệu người học được thu thập cho kết quả khả quan khi so sánh với một số kiến trúc hiện đại trong khi kích thước mô hình đơn giản hơn. Chúng tôi cũng thiết kế tích hợp mô hình được đề xuất với hệ thống quản lý học tập trực tuyến (LMS) theo hướng kết nối mở để gia tăng thêm tính năng giám sát và theo dõi quá trình học tập, chủ động cảnh báo cho giáo viên, người học biết để điều chỉnh hoạt động dạy và học nhằm nâng cao chất lượng đào tạo.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH