Deep learning is currently an area of interest in research and development by scientists around the world. Deep learning models are deployed and applied in practice for work and social life. However, deep learning has many potential risks related to security in applications, especially recently adversarial attacks using adversarial examples are a big challenge for deep learning in particular and machine learning in general. To test the robustness of the machine learning model, we propose to use three adversarial attacks to calculate the benchmark, the experimental attack methods on the MS-COCO dataset are being used to train the machine learning model, training and testing for the YOLO model. The article summarizes the results of the successful attack rate using the proposed indicators according to the research through the experimental process conducted by the authors to verify the robustness of the deep learning model in general. The comprehensive experiments in the study were performed on the YOLOv7 model to test and evaluate the robustness of the YOLOv7 model, which is also a popularly used deep learning model and is considered to be advanced today.Học sâu hiện đang là lĩnh vực được quan tâm nghiên cứu và phát triển bởi các nhà khoa học trên thế giới. Các mô hình học sâu được triển khai và ứng dụng nhiều trong thực tiễn phục vụ công việc và đời sống xã hội. Tuy nhiên học sâu lại tiềm tàng nhiều rủi ro có liên quan đến an toàn trong các ứng dụng, đặc biệt gần đây các cuộc tấn công sử dụng mẫu đối kháng đang là thách thức lớn đối với học sâu nói riêng và học máy nói chung. Để kiểm tra được độ mạnh mẽ của mô hình học máy, chúng tôi đề xuất sử dụng ba cuộc tấn công đối kháng để tính toán điểm chuẩn, các phương pháp tấn công thực nghiệm trên bộ dữ liệu MS-COCO đang được dùng để huấn luyện và kiểm tra đối với mô hình YOLO. Bài báo thống kê kết quả tỉ lệ tấn công thành công bằng các chỉ số đề xuất theo nghiên cứu thông qua quá trình thực nghiệm do nhóm tác giả thực hiện để kiểm chứng độ mạnh mẽ của mô hình học sâu nói chung. Các thực nghiệm toàn diện trong nghiên cứu được thực nghiệm trên mô hình YOLOv7 để kiểm tra và đánh giá độ mạnh mẽ của mô hình YOLOv7, đây cũng là mô hình học sâu đang được sử dụng phổ biến và được đánh giá là tiên tiến hiện nay.