A cryptographic method known as Zero-Knowledge Proof, or ZKP for short, was introduced to the public for the first time in the 1990s. ZKP has been extensively implemented in practice over the past decade, such as in blockchain technology and authentication systems, as well as incorporated into other cryptographic algorithms. The majority of these ZKP schemes are mathematically founded on finite fields. In this paper, we propose a Schnorr-based ZKP scheme on Elliptic curves. This approach has high security and better performance than the Schnorr-based ZKP scheme on the finite field. Moreover, its security enhancements are superior to those of other Schnorr-based ZKP algorithms on the Elliptic curve. These results are argued on the basis of the mathematical theory of published and experimental works in the Python programming language. Therefore, it can be concluded that this ZKP scheme has tremendous potential for implementation in client-side authentication systems and in Blockchain technology.Zero-Knowledge Proof (ZKP) - bằng chứng không lộ tri thức là một dạng kỹ thuật mật mã được công bố đầu tiên từ thập niên 90 của thế kỷ trước. Tuy nhiên, trong vòng 10 năm trở lại đây thì ZKP mới được ứng dụng phổ biến trong thực tế như: công nghệ Blockchain, hệ thống xác thực và kết hợp vào các thuật toán mật mã khác. Các lược đồ ZKP đang sử dụng này thì đa phần có cơ sở toán học trên trường hữu hạn có chi phí triển khai lớn và tốc độ chậm. Trong bài báo này, chúng tôi đề xuất một lược đồ ZKP kiểu Schnorr với cơ sở toán học dựa trên đường cong Elliptic. Mục tiêu giải pháp ZKP đề xuất trên Elliptic này có độ an toàn cao và hiệu năng tốt hơn so với lược đồ ZKP kiểu Schnorr trên trường hữu hạn, đồng thời có thêm một số cải tiến tốt hơn về mặt bảo mật so với các phiên ZKP kiểu Schnorr đã công bố khác trên đường cong Elliptic. Các kết quả này được lập luận dựa trên phương pháp nghiên cứu cơ sở lý thuyết toán học của các công trình đã công bố và thực nghiệm bằng ngôn ngữ lập trình python. Qua đó kết luận rằng đây là lược đồ ZKP rất có tiềm năng áp dụng vào thực tế trong các hệ thống xác thực và trong công nghệ Blockchain.