Phát hiện tấn công XSS sử dụng học máy kết hợp

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tiến Dũng Trần, Xuân Hạnh Vũ

Ngôn ngữ: vie

Ký hiệu phân loại:

Thông tin xuất bản: Tạp chí Khoa học Trường Đại học Mở Hà Nội, 2023

Mô tả vật lý: tr.23

Bộ sưu tập: Metadata

ID: 346517

 Cross-Site Scripting là một dạng tấn công phổ biến trong các ứng dụng web. Các giải pháp hiện có như dựa trên bộ lọc, phân tích động và phân tích tĩnh không hiệu quả trong việc phát hiện các cuộc tấn công XSS không xác định. Một số nghiên cứu phát hiện các cuộc tấn công XSS sử dụng học máy đã công bố có khả năng phát hiện các cuộc tấn công XSS không xác định tuy nhiên tồn tại một số vấn đề như: bộ phân loại cơ sở đơn, tập dữ liệu nhỏ và hiệu suất mô hình chưa cao. Phương pháp học kết hợp được sử dụng trong nghiên cứu này bao gồm AdaBoost
  Bagging với SVM, Extra-Trees
  Stacking với Extra-Tree, Naïve Bayes và Randomforest cùng với 3 tệp dữ liệu riêng biệt, 3 nhóm đặc trưng cơ bản. Trong nghiên cứu này, mô hình đạt hiệu suất 99.32% với thuật toán Random Forest (một thuật toán thuộc nhóm Bagging).
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH