HybProm: An attention-assisted hybrid CNN-BiLSTM model for the interpretable prediction of DNA promoter.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lixin Guan, Mengshan Li, Jiawei Liu, Rentao Luo

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Methods (San Diego, Calif.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 34746

Promoter prediction is essential for analyzing gene structures, understanding regulatory networks, transcription mechanisms, and precisely controlling gene expression. Recently, computational and deep learning methods for promoter prediction have gained attention. However, there is still room to improve their accuracy. To address this, we propose the HybProm model, which uses DNA2Vec to transform DNA sequences into low-dimensional vectors, followed by a CNN-BiLSTM-Attention architecture to extract features and predict promoters across species, including E. coli, humans, mice, and plants. Experiments show that HybProm consistently achieves high accuracy (90%-99%) and offers good interpretability by identifying key sequence patterns and positions that drive predictions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH