Methodologies Used in Remote Sensing Data Analysis and Remote Sensors for Precision Agriculture

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jiyul Chang, Sigfredo Fuentes

Ngôn ngữ: eng

ISBN-13: 978-3036566146

ISBN-13: 978-3036566153

ISBN: books978-3-0365-6615-3

Ký hiệu phân loại:

Thông tin xuất bản: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023

Mô tả vật lý: 1 electronic resource (226 p.)

Bộ sưu tập: Tài liệu truy cập mở

ID: 376732

When adopting remote sensing techniques in precision agriculture, there are two main areas to consider: data acquisition and data analysis methodologies. Imagery and remote sensor data collected using different platforms provide a variety of information volumes and formats. For example, recent research in precision agriculture has used multispectral images from different platforms, such as satellites, airborne, and, most recently, drones. These images have been used for various analyses, from the detection of pests and diseases, growth, and water status of crops to yield estimations. However, accurately detecting specific biotic or abiotic stresses requires a narrow range of spectral information to be analyzed for each application. In data analysis, the volume and complexity of data formats obtained using the latest technologies in remote sensing (e.g., a cube of data for hyperspectral imagery) demands complex data processing systems and data analysis using multiple inputs to estimate specific categorical or numerical targets. New and emerging methodologies within artificial intelligence, such as machine learning and deep learning, have enabled us to deal with these increasing data volumes and the analysis complexity.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH