Performance comparison ensemble classifier’s performance in answering frequently asked questions about psychology

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tran Hieu Chi, Tong Vy Thuy, Tran Kiet Trung

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Ho Chi Minh City Open University Journal of Science: Engineering and Technology, 2024

Mô tả vật lý: tr.65-70

Bộ sưu tập: Metadata

ID: 380412

In today’s era of digital healthcare transformation, there is a growing demand for swift responses to mental health queries. To meet this need, we introduce an AI-driven chatbot system designed to automatically address frequently asked questions in psychology. Leveraging a range of classifiers including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve Bayes, our system extracts insights from expert data sources and employs natural language processing techniques like LDA Topic Modeling and Cosine similarity to generate contextually relevant responses. Through rigorous experimentation, we find that SVM surpasses Naïve Bayes and KNN in accuracy, precision, recall, and F1-score, making it our top choice for constructing the final response system. This research underscores the effectiveness of ensemble classifiers, particularly SVM, in providing accurate and valuable information to enhance mental health support in response to common psychological inquiries.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH