A speaker recognition system using combination method between Vector Quantization and Gaussian Mixture Model

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Quốc Hưng Ngô, Tú Hà Nguyễn

Ngôn ngữ: vie

Ký hiệu phân loại:

Thông tin xuất bản: Tạp chí Khoa học, Trường Đại học Sư phạm, Đại học Huế, 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 387265

Abstract Speaker recognition is a biometric technique to recognize people’s identity based on their voice signal. A recognition system has two main requirements, which are high accuracy recognition rate and short processing time under large amount of training data. This paper propose a method to solve the two above requirements by performing a combination of two advantages of each VQ and GMM model to provide a new model can be called a “Hybrid VQ/GMM-UBM model”. This model not only takes the advantage of high accuracy in GMM method but also improve the accuracy rate and reduce the amount of computation of the system when combined with VQ model. The efficiency of the model is evaluated by computational time and accuracy rate compared to GMM models. Experimental results showed that the hybrid VQ/GMM-UBM model had better accuracy. Keywords Vietnamese Speaker recognition, Gausisian Mixture Model, Universal Background Model, Vector Quantization, Biometrics.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH