Nghie n cu u u o #c thu #c hie# n vo i 50 ho#c sinh lo p 9, su du#ng 8 ca u ho i lie n quan e n i nh va
o# da
i ca#nh cu a hi
nh la# p phu o ng e a nh gia kha na ng la# p lua# n kho ng gian cu a ho#c sinh ve
ca c bie u die n hai chie
u, ta# p trung va
o la# p lua# n pha n ti ch kho ng gian va
la# p lua# n tru #c quan kho ng gian. Ly lua# n kho ng gian the hie# n trong ca u tra lo
i cu a sinh vie n a u o #c i#nh lu o #ng trong nghie n cu u. Ke t qua cho tha y kha na ng suy lua# n kho ng gian cu a sinh vie n a#t tre n trung bi
nh nhu ng kho ng cao. Ti le# ho#c sinh tra lo
i du #a tre n quan sa t tru #c quan co
n cao. Ha
u he t ho#c sinh a su du#ng la# p lua# n gia i ti ch kho ng gian hoa# c ke t ho #p giu a tru #c quan kho ng gian va
la# p lua# n pha n ti ch kho ng gian, ma
i t khi chi su du#ng la# p lua# n tru #c quan kho ng gian e gia i. Suy lua# n cu a ho#c sinh ve
tu
ng i nh hoa# c oa#n tha ng to t ho n suy lua# n ve
ca c ba
i toa n ke t ho #p ca hai, To m ta t tie ng anh, The study was conducted with 50 grade 9 students, using 8 questions related to the vertex and the side length of the cube to evaluate the students' spatial reasoning about two-dimensional representations, focusing on spatial analysis reasoning and spatial visualization reasoning. The spatial reasoning shown in the students' answers was quantified in the study. The results show that the students' spatial reasoning was above average but not high. The proportion of students answering based on visual observations was still high. Most students used spatial analysis reasoning or a combination of spatial visualization and spatial analysis reasoning, but rarely used only spatial visualization reasoning to solve. Students' reasoning about individual vertex or line segments is better than reasoning about problems that combine both