Ba i ba o na y tri nh ba y ca c ke t qua nghie n cu u ve kha na ng ha p phu# amoni cu a va# t lie# u qua# ng apatit/nano sa t tu oxit. a nghie n cu u mo# t so a# c tru ng hoa ly cu a va# t lie# u ba ng phu o ng pha p SEM va TEM. No ng o# cu a amoni u o #c xa c i#nh ba ng phu o ng pha p quang pho ha p thu# pha n tu . a nghie n cu u ca c ie u kie# n to i u u cho phe p xa c i#nh amoni ba ng phu o ng pha p quang pho ha p thu# pha n tu : bu o c so ng 420 nm
pH 1-2
tho i gian 30 phu t. Ca c thi nghie# m ha p phu# amoni tre n va# t lie# u u o #c tie n ha nh vo i ca c tho ng so sau: kho i lu o #ng va# t lie# u: 0,1g
the ti ch dung di#ch amoni: 25 mL
pH 7- 8
to c o# la c 200 vo ng/phu t
tho i gian a#t ca n ba ng ha p phu# la 150 phu t o nhie# t o# pho ng (25 ± 2oC)
Trong khoa ng nhie# t o# kha o sa t tu 298 ÷ 338K, dung lu o #ng va hie# u sua t ha p phu# amoni tre n va# t lie# u gia m. Dung lu o #ng ha p phu# amoni cu #c a#i tre n va# t lie# u o 25 ± 2oC theo mo hi nh a ng nhie# t ha p phu# Langmuir la 13,69 mg/g., To m ta t tie ng anh, Removal of ammonium from aqueous solution by using apatite ore/Fe3O4 nanoparticles was investigated in the present study. Characterizations of the material were examined by SEM and TEM. The concentration of ammonium was measured by Ultraviolet-visible spectroscopy (UV-Vis). The optimum conditions for examining ammonium by UV-Vis were systematically studied and found as wave length 420 nm
pH 1-2
time 30 min. The experiments were conducted using the following parameters: absorbent mass 0.1 g
the solution volume 25 mL
pH 7,0 - 8,0
shaking speed 200 rounds/min
contact time 150 min at room teperature (25 ± 20C). In the temperature range of 298 ÷ 338K, the ammonium adsorption capacity and the ammonium effective adsorption were reduced when the temperature increased. Maximum ammonium adsorption capacity on the material was calculated by the Langmuir adsorption isotherm model as 13.69 mg/g at 25 ± 20C.