Mô hình điều động tàu thủy đóng vai trò quan trọng trong nghiên cứu điều động tàu, thiết kế hệ thống điều khiển chuyển động và xây dựng có hệ thống mô phỏng lái tàu. Nhận dạng mô hình động lực học tàu và xác định các tham số mô hình luôn là bài toán khó do sự phụ thuộc phi tuyến của các yếu tố thủy động lực vào các tham số động học của tàu. Để giải quyết bài toán này nhiều kỹ thuật nhận dạng hệ thống đã được sử dụng. Trong bài báo này, mạng nơ ron nhân tạo nhiều lớp truyền thẳng nhờ khả năng xấp xỉ hàm phi tuyến với độ chính xác tùy ý tùy thuộc vào cấu trúc mạng được sử dụng để xấp xỉ động lực học tàu thủy và xác định các hệ số của phương trình mô tả chuyển động tàu trên mặt phẳng nằm ngang. Các dữ liệu luyện mạng được lấy từ mô phỏng điều động zigzag. So sánh được thực hiện giữa mô hình lý thuyết và mô hình xấp xỉ được thực hiện thông qua mô phỏng điều động vòng tròn quay trở. Các tham số của mô hình điều động được xác định thông qua phân tích các quan hệ xấp xỉ theo chuỗi Taylor. Kết quả cho thấy mô hình xấp xỉ trên cơ sở mạng nơ ron mô tả tương đối trung thực chuyển động của mô hình lý thuyết và có thể được áp dụng trong thực tế., Tóm tắt tiếng anh, Ship maneuvering models play an important role in ship maneuvering research, designing ship motion control systems and ship steering simulators. Problem ò ship dynamic identification is always a hard issue. For dealing with the problem various system identification techniques were and are developed. In this paper, a multilayer feed-forward neural network (NN)thank for its ability of approximation of any nonlinear relationship with predefined accuracy depended on network architecture is used for approximation of ship dynamics and determination of coefficients of mathematical equations describing ship motion in horizontal plane (yaw motion). The data for network training is generated by performing zigzag maneuver. Comparison has been made between theoretical model and estimated model is conducted by performing the tuning circle maneuver. The maneuvering model parameters are then calculated by expression of approximated relationship in Taylor's series. The results show that the maneuvering model obtained by neural network approach adequately reflects the motion of the theoretical one and proposed approach can be applied in practice.