Bài báo này đề xuất một lý thuyết biến dạng cắt bậc cao hai biến để phân tích ứng xử tĩnh của dầm composite.Trường chuyển vị của bài toán được rút gọn từ lý thuyết biến dạng cắt bậc cao ba biến bằng cách sử dụng phương trình cân bằng tĩnh học. Phương trình chủ đạo được thành lập từ phương trình Lagrange. Lời giải Ritz,với hàm xấp xỉ là hàm số mũ cơ số Napier, phù hợp với các điều kiện biên khác nhau được đề xuất để giải bài toán. Sự hiệu quả của trường chuyển vị đề xuất và hàm xấp xỉ Ritz mới được phân tích, đánh giá. Các ví dụ số được thực hiện để khảo sát độ hội tụ của lời giải và so sánh với các nghiên cứu trước. Ảnh hưởng của điều kiện biên, hướng sợi, tỷ số chiều dài/chiều cao dầm, đặc biệt là biến dạng cắt đến chuyển vị và ứng suất của dầm composite lớp được khảo sát và bình luận chi tiết, Tóm tắt tiếng anh, This paper proposes a two-variable higher-order beam theory for static analysis of laminated composite beams. The displacement fields are refined from general higher-order beam theory by using static equilibrium equations. The governing equations are established from the Lagrange equations. The Ritz's approximation functions, which so called Napier's exponential functions, are developed for various boundary conditions. The effectiveness of the proposed displacement field and new Ritz's approximation function are analyzed and evaluated. The numerical examples are performed to examine the convergence of solution, and compare with available results. Effects of boundary conditions, fiber orientation, length-to-height ratio and especially shear effect on displacement and stress of laminated composite beams are investigated and discussed in detail.