Ứng dụng mạng nơ-ron học sâu trong dự báo độ mát mát khối lượng của bê tông chứa cốt liệu cao su dưới ảnh hưởng của nhiệt độ

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Viết Long Đoàn, Trần Minh Đạt Lê

Ngôn ngữ: Vie

Ký hiệu phân loại: 691 Building materials

Thông tin xuất bản: Tạp chí Khoa học và Công nghệ Đại học Đà Nẵng , 2021

Mô tả vật lý: 44-48

Bộ sưu tập: Metadata

ID: 420951

Bài báo này giới thiệu cách tiếp cận mới trong việc sử dụng mô hình mạng nơ ron học sâu (DLNN) để dự đoán độ mất mát khối lượng của bê tông chứa cốt liệu cao su (RC) dưới tác dụng của nhiệt độ. Một mô hình cấu trúc của DLNN với 22 nơron trong 3 lớp ẩn được đề xuất. Bộ dữ liệu với 162 mẫu, bao gồm bốn yếu tố ảnh hưởng Tỉ lệ nước/ xi măng, thời gian nung, nhiệt độ. tỉ lệ vụn cao su thay thế được sử dụng để huấn luyện và xác nhận mô hình đã được thu thập từ các tài liệu. Đầu ra là tỉ lệ mất mát khối lượng của RC. Mô hình DLNN được so sánh với hai kỹ thuật học máy khác là Random Forest và Multilayer Perceptron. Kết quà cho thấy mô hình DLNN vượt trội hơn so với các mô hình khác và do đó nó có thế được sử dụng như một phương pháp phù hợp để dự đoán độ mất mát khối lượng của RC dưới ảnh hưởng của nhiệt độ.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH