Bài toán suy diễn hậu nghiệm cho mỗi văn bản đóng vai trò quan trọng trong mô hình chủ đề. Tuy nhiên, trong quá trình giải bài toán suy diễn này thường đưa về dưới dạng một bài toán tối ưu không lồi với dữ liệu lớn, do đó nó thường là bài toán NP-khó. Có nhiều phương pháp được đề xuất để giải xấp xỉ bài toán suy diễn hậu nghiệm như phương pháp Variational Bayes (VB), collapsed variational Bayes (CVB) hay phương pháp collapsed Gibbs sampling (CGS),... Tuy nhiên các phương pháp này hầu hết không đảm bảo về chất lượng cũng như tốc độ hội tụ của thuật toán. Với ý tưởng sử dụng thuật toán Online Frank-Wolfe (OFW) và thuật toán Online Maximum a Posterior Estimation (OPE), chúng tôi đề xuất hai thuật toán cải tiến có hiệu quả giải bài toán suy diễn hậu nghiệm với mô hình chủ đề, đó là IOPE1, IOPE2. Bằng việc sử dụng biên ngẫu nhiên, xấp xỉ ngẫu nhiên và phân phối ngẫu nhiên như phân phối Uniform, phân phối Bernoulli, các đề xuất của chúng tôi được sử dụng để phát triển các phương pháp mới có hiệu quả để học các mô hình chủ đề từ bộ sưu tập văn bản lớn.