Nghiên cứu triển khai mạng học sâu lenet5 trên vi điều khiển STM32 ứng dụng trong nhận dạng hình ảnh

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Việt Thắng Huỳnh

Ngôn ngữ: vie

Ký hiệu phân loại: 004 Data processing || Computer science

Thông tin xuất bản: Tạp chí Khoa học và Công nghệ Đại học Thái Nguyên, 2021

Mô tả vật lý: 191-199

Bộ sưu tập: Metadata

ID: 431330

Sự ra đời của các thiết bị di động thông minh, cùng với sự bùng nổ của các ứng dụng và dịch vụ trên nền tảng Internet dẫn đến sự ra đời của mô hình tính toán mới - điện toán biên. Cùng với xu hướng ứng dụng trí tuệ nhân tạo đang rộng mở hiện nay, triển khai các ứng dụng trí tuệ nhân tạo và học sâu trên nền tảng điện toán biên là một xu hướng nổi bật. Bài báo này sẽ khảo sát khả năng thực thi mô hình học sâu sử dụng mạng nơ-ron tích chập LeNet5 cho các bài toán học sâu được triển khai trên các vi điều khiển công suất thấp dựa trên kiến trúc ARM. Chúng tôi trình bày quá trình thiết kế và thực thi bài toán nhận dạng hình ảnh là chữ số viết tay trên board phát triển STM32. Chúng tôi sử dụng Google Colab và ngôn ngữ Python để huấn luyện mô hình mạng nơ-ron tích chập, sau đó ánh xạ mô hình đã huấn luyện lên thực thi trên board phát triển vi điều khiển STM32F411 với công cụ X-Cube-AI. Kết quả đánh giá thực tế trên phần cứng cho thấy việc thực thi trên vi điều khiển đạt hiệu năng gần tương đương với thực thi trên máy tính đa mục đích.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH