Nhận dạng tấm pin mặt trời bị lỗi dựa trên hình ảnh điện phát quang bằng deep learning

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Minh Hiếu Lê, Thị Minh Châu Lê, Đăng Tiến Nguyễn, Quốc Minh Nguyễn

Ngôn ngữ: vie

Ký hiệu phân loại: 621.31 Generation, modification, storage, transmission of electric power

Thông tin xuất bản: Tạp chí Khoa học và Công nghệ Đại học Thái Nguyên, 2021

Mô tả vật lý: 117-123

Bộ sưu tập: Metadata

ID: 432178

Việc xác định tấm pin mặt trời bị hỏng có vai trò rất quan trọng trong việc đảm bảo vận hành an toàn, tin cậy và hiệu suất tối đa của các nhà máy điện mặt trời. Trong nghiên cứu này, chúng tôi đề xuất sử dụng mô hình deep learning để tự động hoá việc phân loại tấm pin mặt trời bị lỗi. Mô hình này bao gồm mạng nơron tích chập được dùng để trích xuất đặc trưng và thuật toán máy học véctơ hỗ trợ để nhận dạng. Mô hình được huấn luyện và kiểm tra trên tập dữ liệu bao gồm 2.146 hình ảnh điện phát quang có độ phân giải cao của các tấm pin mặt trời loại momo và loại poly. Kết quả phân loại cho thấy mô hình đề xuất có thể phân loại được tấm pin mặt trời bị hỏng với độ chính xác đạt được là 91,63%.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH