Nhu cầu oxy sinh hóa (BOD) là thông số chất lượng nước quan trọng để đánh giá mức độ ô nhiễm của nước trên các sông, hồ. Tuy nhiên, việc xác định nồng độ BOD5 trong nước theo các phương pháp phân tích trong phòng thí nghiệm thường mất nhiều thời gian (5 ngày). Mục tiêu của nghiên cứu là xây dựng mô hình dự báo thông số BOD5 dựa trên hai mô hình nơ-ron nhân tạo là MLP và RBF tại hạ lưu sông Sài Gòn-Đồng Nai và đánh giá hiệu quả dự báo giữa hai mô hình. Bảy kịch bản được xây dựng dựa trên tương quan riêng phần giữa thông số BOD5 với các thông số chất lượng nước khác bao gồm COD, DO, TSS, Coliform, P-PO4 3-, T và N-NH4 +. Bộ dữ liệu bao gồm 08 thông số chất lượng nước theo tháng từ 2013-2018 và được chia thành hai phần theo tỷ lệ 7525 phục vụ huấn luyện và kiểm tra các mô hình. Kết quả nghiên cứu cho thấy, cả hai mô hình MLP và RBF đều có khả năng dự báo tốt BOD5 tại khu vực, tuy nhiên mô hình RBF với 05 thông số đầu vào (COD, DO, TSS, Coliform, P-PO4 3-) cho kết quả dự báo tốt nhất với NSE = 0,855, R2 = 0,9, RMSE = 0,529 cho quá trình huấn luyện và NSE = 0,848, R2 = 0,865, RMSE = 0,454 cho quá trình kiểm tra. Kết quả nghiên cứu này cũng là nền tảng phục vụ cho việc dự báo các thông số chất lượng nước khác, cũng như dự báo ngắn hạn BOD5 trong khu vực nghiên cứu. Từ khóa Nhu cầu oxy sinh hóa
Mô hình nơ-ron nhân tạo
MLP
RBF