Một đánh giá gradient trong không gian lorentz cho phương trình p-laplace dữ liệu độ đo với p gần 1

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hồng Phúc Lê

Ngôn ngữ: vie

Ký hiệu phân loại: 510 Mathematics

Thông tin xuất bản: Tạp chí Khoa học Trường Đại học Sư phạm Thành phố Hồ Chí Minh , 2021

Mô tả vật lý: 521-537

Bộ sưu tập: Metadata

ID: 439218

Phương trình p-Laplace là một trong các phương trình được nhiều nhà toán học nghiên cứu. Đây là phương trình có nhiều ứng dụng trong vật lí và các ngành khoa học khác. Trong bài báo này, chúng tôi chứng minh một kết quả đánh giá gradient trong không gian Lorentz cho nghiệm renormalized của phương trình p-Laplace dữ liệu độ đo trên miền Reifenberg với giá trị p gần 1. Để chứng minh kết quả chính, chúng tôi sử dụng kĩ thuật good-λ được nghiên cứu trong nhiều bài báo gần đây. Cụ thể, chúng tôi kế thừa các kết quả về bất đẳng thức Hölder ngược và đánh giá so sánh giữa nghiệm của bài toán ban đầu và nghiệm của bài toán thuần nhất trong bài báo (Tran, & Nguyen, 2019c) để chứng minh bất đẳng thức gọi là good-λ. Đặc biệt, chúng tôi xét giả thiết bài toán trên miền Reifenberg để thu được đánh giá tốt hơn trong bài báo (Tran, & Nguyen, 2019c).
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH