Information Processing in Biochemical Networks.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Gašper Tkačik, Pieter Rein Ten Wolde

Ngôn ngữ: eng

Ký hiệu phân loại: 594.38 *Pulmonata

Thông tin xuất bản: United States : Annual review of biophysics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 44093

Living systems are characterized by controlled flows of matter, energy, and information. While the biophysics community has productively engaged with the first two, addressing information flows has been more challenging, with some scattered success in evolutionary theory and a more coherent track record in neuroscience. Nevertheless, interdisciplinary work of the past two decades at the interface of biophysics, quantitative biology, and engineering has led to an emerging mathematical language for describing information flows at the molecular scale. This is where the central processes of life unfold: from detection and transduction of environmental signals to the readout or copying of genetic information and the triggering of adaptive cellular responses. Such processes are coordinated by complex biochemical reaction networks that operate at room temperature, are out of equilibrium, and use low copy numbers of diverse molecular species with limited interaction specificity. Here we review how flows of information through biochemical networks can be formalized using information-theoretic quantities, quantified from data, and computed within various modeling frameworks. Optimization of information flows is presented as a candidate design principle that navigates the relevant time, energy, crosstalk, and metabolic constraints to predict reliable cellular signaling and gene regulation architectures built of individually noisy components.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH