Ước tính khả năng chịu cắt chọc thủng (PSC) của tấm bê tông cốt sợi thép (SFRCS) là một nhiệm vụ quan trọng trong thiết kế kết cấu. Nghiên cứu này khảo sát các mô hình mạng nơ-ron nhân tạo được huấn luyện bởi thuật toán Adam trong tính toán PSC của SFRCS. Để hạn chế vấn đề quá khớp trong quá trình huấn luyện, phương pháp AdamW và AdamL2 đã được sử dụng. Một tập dữ liệu bao gồm 140 mẫu đã được sử dụng để đào tạo và kiểm chứng các phương pháp học máy. Xét về chỉ số RMSE, kết quả thí nghiệm bao gồm 20 lần chạy độc lập chỉ ra rằng khả năng dự đoán của mô hình AdamW (RMSE = 30,60) và AdamL2 (RMSE = 31,74) tốt hơn so với Adam (RMSE = 36,62). Tuy nhiên, độ chính xác một mô hình kết hợp giữa AdamW và AdamL2 (RMSE = 32,31) lại kém hơn các mô hình AdamW và AdamL2.