DỰ ĐOÁN KẾT QUẢ HỌC TẬP CỦA SINH VIÊN BẰNG KỸ THUẬT KHAI PHÁ DỮ LIỆU

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Minh Tâm Nguyễn, Thị Uyên Nguyễn

Ngôn ngữ: Vie

Ký hiệu phân loại:

Thông tin xuất bản: Tạp chí Khoa học Trường Đại học Vinh, 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 454502

Hiện nay, tình trạng sinh viên bị buộc ngừng học đang diễn ra rất phổ biến tại các trường đại học ở Việt Nam. Bài báo này đề xuất phương pháp cho phép dự đoán được khả năng bị buộc ngừng học dựa vào phân tích dữ liệu từ điểm thi đầu vào, điểm thi các môn của ba học kỳ đầu và tình trạng hiện thời (tiếp tục học hoặc ngừng học) của hơn 555 sinh viên khóa 54, 55, 56 ngành Công nghệ thông tin, Trường Đại học Vinh. Từ dữ liệu đã có, hai thuật toán khai phá dữ liệu Logistic Regression, Naive Bayes đã được áp dụng để tìm ra mô hình tốt nhất cho việc dự báo tình trạng học tập cho sinh viên các khóa tiếp theo. Việc nghiên cứu này sẽ giúp cho Nhà trường đưa ra được những cảnh báo sớm và có phương án hỗ trợ để giảm tỷ lệ bị buộc thôi học cho các sinh viên khóa sau.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH