Dự báo nồng độ bụi PM2.5 phát tán trong quá trình nổ mìn trên các mỏ lộ thiên sử dụng mạng nơ-ron nhân tạo và giải thuật tối ưu hóa bầy đàn cải tiến (APSO-MLP)

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xuân Nam Bùi, Hoàng Nguyễn, Tuấn Thành Nguyễn, Khắc Hùng Trần, Quang Hiếu Trần

Ngôn ngữ: Vie

Ký hiệu phân loại: 624 Civil engineering

Thông tin xuất bản: Khi tượng Thủy văn, 2022

Mô tả vật lý: 88-99

Bộ sưu tập: Metadata

ID: 457361

 Trong bài báo này, bụi mịn PM2.5 sinh ra do quá trình nổ mìn trên mỏ lộ thiên đã được dự báo bởi các mô hình trí tuệ nhân tạo dựa trên mạng nơ-ron truyền thẳng nhiều lớp (Multi-layer Perceptron Neural Network - MLP) và các giải thuật "tối ưu hóa bầy đàn" được cải tiến (Accelerated Particle Swarm Optimization - APSO), giải thuật di truyền (Genetic Algorithm - GA), có tên gọi APSO-MLP và GA-MLP. Các thông số nổ mìn và điều kiện khí tượng đã được xem xét trong nghiên cứu này. Một mạng MLP đã được thiết kế để dự báo nồng độ bụi mịn PM2.5. Các giải thuật tối ưu hóa APSO và GA đã được đưa vào để tối ưu hóa các trọng số của mô hình MLP nhằm cải thiện mức độ chính xác của mô hình MLP truyền thống trong quá trình dự báo. Các kết quả cho thấy cả hai mô hình được phát triển đều có khả năng dự báo nồng độ bụi mịn PM2.5 sinh ra do nổ mìn với mức độ chính xác tương đối cao. Trong đó, mô hình APSO-MLP cung cấp mức độ chính xác cao hơn so với mô hình GA-MLP (RMSE = 5,102
  R2 = 0,900 và MAPE = 0,063). Trong khi đó, mô hình GA-MLP chỉ cung cấp mức độ chính xác với RMSE = 5,331, R2 = 0,890 và MAPE = 0,073.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH