Enhance Control Performance of a Pneumatic Artificial Muscle System Using RBF-Neural Network Approximation and Power Rate Exponential Reaching Law Sliding Mode Control

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Quy Thinh Dao, Viet-Thanh Nguyen

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Chuyên san Đo lường, Điều khiển và Tự động hóa, 2024

Mô tả vật lý: tr.64-72

Bộ sưu tập: Metadata

ID: 459522

This research focuses on the integration of a radial basis function neural network (RBFNN) for uncertainty approximation in pneumaticartificial muscle (PAM) systems within the framework of power rate exponential reaching law sliding mode control (PRERL-SMC). Configuredin an antagonistic manner, PAMs provide a range of benefits for developing actuators with human-like characteristics. Nevertheless, theirintrinsic nonlinearity and uncertain behavior are obstacles to attaining accurate control, particularly in rehabilitation scenarios where ensuringcontrol precision is imperative for safety and effectiveness. The proposed method leverages a power rate exponential reaching law to ensurechattering-free control and swift convergence towards desired trajectories, while the RBFNN effectively approximates system uncertainties.Through comprehensive experiments, we compare the RBF-PRERL-SMC approach with conventional control methods, showcasing its superiorperformance in tracking various trajectories. Notably, our strategy proves robust against external perturbations, demonstrating its applicabilityin rehabilitation scenarios.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH