Machine Learning Modeling for Spatial-Temporal Prediction of Geohazard

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

ISBN-13: 978-3036597867

ISBN-13: 978-3036597874

ISBN: books9783036597874

Ký hiệu phân loại:

Thông tin xuất bản: MDPI - Multidisciplinary Digital Publishing Institute, 2023

Mô tả vật lý: 1 online resource (274 p.)

Bộ sưu tập: Tài liệu truy cập mở

ID: 461343

Geohazards, such as landslides, rock avalanches, debris flow, ground fissures, and ground subsidence, pose a significant threat to people's lives and property. Recently, machine learning (ML) has become the predominant approach in geohazard modeling, offering advantages such as an excellent generalization ability and accurately describing complex and nonlinear behaviors. However, the utilization of advanced algorithms in deep learning remains poorly understood in this field. Additionally, there are fundamental challenges associated with ML modeling, including input variable selection, uncertainty quantification, and hyperparameter tuning. This reprint presents original research exploring new advances and challenges in the application of ML in the spatial-temporal modeling of geohazards. The contributions cover the susceptibility analysis of glacier debris flow and landslides, the displacement prediction of reservoir landslides, slope stability prediction and classification, building resilience evaluation, and the prediction of rainfall-induced landslide warning signals.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH