Damage sensing through TLR9 regulates inflammatory and antiviral responses during influenza infection.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Karen Agaronyan, William Bain, Lujia Chen, Charles S Dela Cruz, Heran Essayas, John Evankovich, Shifa Gandhi, David Gau, Gayatri Gupta, Erica L Herzog, Buqu Hu, Genta Ishikawa, Ayelet Kaminski, Jooyoung Kim, Chris J Lee, John McGovern, Changwan Ryu, Tina Saber, Tayebeh Saleh, Lokesh Sharma, Ying Sun, Nicholas Toosi, Victoria D Wang, Samuel Woo, Sheeline Yu, Yifan Yuan, HongDuck Yun, Amy Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : Mucosal immunology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 462677

Host response aimed at eliminating the infecting pathogen, as well as the pathogen itself, can cause tissue injury. Tissue injury leads to the release of a myriad of cellular components including mitochondrial DNA (mtDNA), which the host senses through pattern recognition receptors. How the sensing of tissue injury by the host shapes the anti-pathogen response remains poorly understood. In this study, we utilized mice that are deficient in toll-like receptor-9 (TLR9), which binds to unmethylated CpG DNA sequences such as those present in bacterial and mtDNA. To avoid direct pathogen sensing by TLR9, we utilized the influenza virus, which lacks ligands for TLR9, to determine how damage sensing by TLR9 contributes to anti-influenza immunity. Our data showed that TLR9-mediated sensing of tissue damage promoted an inflammatory response during early infection, driven by epithelial and myeloid cells. Along with the diminished inflammatory response, the absence of TLR9 led to impaired viral clearance manifested as higher and prolonged influenza components in myeloid cells, including monocytes and macrophages, rendering them highly inflammatory. The persistent inflammation driven by infected myeloid cells led to persistent lung injury and impaired recovery in influenza-infected TLR9-/- mice. Further, we found elevated TLR9 ligands in the plasma samples of patients with influenza infection and its association with the disease severity in hospitalized patients, demonstrating its clinical relevance. Overall, we demonstrated an essential role of damage sensing through TLR9 in promoting anti-influenza immunity and inflammatory response. AUTHOR SUMMARY: Tissue damage is an inevitable outcome of clinically relevant lung infections, but the host mechanisms for detecting such damage during infection are not well understood. We investigated the role of Toll-like receptor 9 (TLR9) in sensing tissue damage caused by influenza. Since influenza lacks TLR9 ligands, we hypothesized that TLR9 signaling is driven by tissue damage molecules like mitochondrial DNA (mtDNA). Our data revealed that TLR9 deficiency reduces early inflammatory lung injury but impairs viral clearance, resulting in extensive infection of immune cells, persistent inflammation, and delayed recovery. Myeloid-specific TLR9 deletion ameliorated late-stage inflammatory responses. In humans, influenza-infected individuals exhibited elevated TLR9 activity and mtDNA levels in plasma compared to healthy controls, with higher TLR9 activation potential correlating with severe disease requiring ICU admission. These findings suggest that TLR9-mediated damage sensing triggers both inflammatory tissue injury and viral clearance. These data indicate that TLR9 activity can serve as a crucial biomarker and therapeutic target to limit influenza-induced tissue injury.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH