A comprehensive evaluation of histopathology foundation models for ovarian cancer subtype classification.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Katie Allen, Jack Breen, Lucy Godson, Nicolas M Orsi, Nishant Ravikumar, Kieran Zucker

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : NPJ precision oncology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 462687

Histopathology foundation models show great promise across many tasks, but analyses have been limited by arbitrary hyperparameters. We report the most rigorous single-task validation study to date, specifically in the context of ovarian carcinoma morphological subtyping. Attention-based multiple instance learning classifiers were compared using three ImageNet-pretrained encoders and fourteen foundation models, each trained with 1864 whole slide images and validated through hold-out testing and two external validations (the Transcanadian Study and OCEAN Challenge). The best-performing classifier used the H-optimus-0 foundation model, with balanced accuracies of 89%, 97%, and 74%, though UNI achieved similar results at a quarter of the computational cost. Hyperparameter tuning the classifiers improved performance by a median 1.9% balanced accuracy, with many improvements being statistically significant. Foundation models improve classification performance and may allow for clinical utility, with models providing a second opinion in challenging cases and potentially improving the accuracy and efficiency of diagnoses.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH