Tea disease identification based on ECA attention mechanism ResNet50 network.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lanting Li, Yingding Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 579.135 +Genetics

Thông tin xuất bản: Switzerland : Frontiers in plant science , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 462814

Addressing the challenge of identifying tea plant diseases against the complex background of tea gardens, this study proposes the ECA-ResNet50 model. By optimizing the ResNet50 architecture, adopting a multi-layer small convolution kernel strategy to enhance feature extraction capabilities, and introducing the ECA attention mechanism to focus on key features, the model achieves a 93.06% accuracy rate in tea disease identification, representing a 3.18% improvement over the original model, demonstrating industry-leading performance advantages. This model not only accurately identifies tea diseases in gardens but also possesses excellent generalization capabilities, performing outstandingly on datasets of other plant categories. These results indicate that ECA-ResNet50 can effectively mitigate the interference of complex backgrounds and precisely recognize tea disease targets.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH