Flexible electronic sensors that can capture subtle physical, chemical and biological signals and generate real-time stimulus responses are of great importance in the fields of human-computer interaction, biomedicine, etc. Herein, a multifunctional sensing hydrogel was developed by tightly adhering two-dimensional rigid conductive MXene nanosheets to the surface of vimineous silk nanofibers (SNFs) and assembling them into an SNF@MXene network structure. Polyvinyl alcohol (PVA) was then in situ polymerized in SNF@MXene as a filling matrix. MXene nanosheets were attached to the SNF network skeleton, avoiding the settlement and aggregation of MXene and forming a PSM composite hydrogel with a uniform and dense conductive network. The designed PSM hydrogel-based sensor showed excellent mechanical properties (tensile strength = 5.07 MPa), wide operating range (700.6 %), high sensitivity (gauge factor = 8.2), high electrical conductivity (1.64 S m