A taguchi neural network-based optimization of a dual-port, dual-band MIMO antenna encompassing the 28/34 GHz millimeter wave regime.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yazeed Alzahrani, R Krishna Chaitanya, Ajay Kumar Dwivedi, Komal Parashar, Subhav Singh, Suyash Kumar Singh, Vivek Singh, Manoj Tolani

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 469200

This study presents a novel printed antenna design that operates at the millimeter-wave frequencies of 28 and 34 GHz, which are crucial for the current and upcoming mobile communication generations. The radiating component in the antenna is a slot-etched rectangular ring that is fed through a stepped impedance microstrip line feed. Using advanced machine learning techniques, the design parameters of the suggested antenna have been fine-tuned to ensure optimal impedance matching at 28 GHz within the frequency range of 27.61-28.49 GHz. Additionally, the antenna also provides excellent impedance matching at 34.5 GHz within the frequency range of 33.61-34.27 GHz. Using the designated antenna, a Multiple Input Multiple Output (MIMO) system with two ports is constructed. The MIMO system's performance is evaluated by analyzing channel capacity loss (CCL), diversity gain (DG), and envelope correlation coefficient (ECC), which showcases outstanding outcomes. The study further explores the optimization of a antenna's structure using a Taguchi-based Neural Network (Taguchi NN) approach to predict the reflection coefficient (|S
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH