GPU-accelerated simulated annealing based on p-bits with real-world device-variability modeling.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Takahiro Hanyu, Naoya Onizawa

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 469224

Probabilistic computing using probabilistic bits (p-bits) presents an efficient alternative to traditional CMOS logic for complex problem-solving, including simulated annealing and machine learning. Realizing p-bits with emerging devices such as magnetic tunnel junctions introduces device variability, which was expected to negatively impact computational performance. However, this study reveals an unexpected finding: device variability can not only degrade but also enhance algorithm performance, particularly by leveraging timing variability. This paper introduces a GPU-accelerated, open-source simulated annealing framework based on p-bits that models key device variability factors-timing, intensity, and offset-to reflect real-world device behavior. Through CUDA-based simulations, our approach achieves a two-order magnitude speedup over CPU implementations on the MAX-CUT benchmark with problem sizes ranging from 800 to 20,000 nodes. By providing a scalable and accessible tool, this framework aims to advance research in probabilistic computing, enabling optimization applications in diverse fields.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH