Using visible and NIR hyperspectral imaging and machine learning for nondestructive detection of nutrient contents in sorghum.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xiuhan He, Gangao Li, Zhiwei Li, Kai Wu, Zilin Zhang, Decong Zheng

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 469274

Nondestructive, rapid, and accurate detection of nutritional compositions in sorghum is crucial for agricultural and food industries. In our study, the crude protein, tannin, and crude fat contents of sorghum variety samples were taken as the research object. The visible near-infrared (VIS-NIR) hyperspectral of sorghum were measured by the indoor mobile scanning platform. The nutritional components were determined using chemical methods to analyze the differences in nutritional composition among different varieties. After preprocessing the original spectral, the competitive adaptive reweighted sampling (CARS) and bootstrapping soft shrinkage (BOSS) algorithms were used to coarsely extract the key variables. Subsequently, the iteratively retains informative variables (IRIV) was employed to assess the importance of these key variables, resulting in explanatory wavelength sets for crude protein, tannin, and crude fat. Finally, the partial least squares (PLS), back propagation (BP) and extreme learning machine (ELM) were utilized to establish detection models. The results indicated that the optimal wavelength variable sets for crude protein, tannin, and crude fat contained 41, 38, and 22 wavelength variables, respectively. The CARS-IRIV-PLS, BOSS-IRIV-PLS and BOSS-IRIV-ELM were suitable for detecting crude protein, tannin and crude fat, respectively. Meanwhile, the R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH