AI-based approach to dissect the variability of mouse stem cell-derived embryo models.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Paolo Caldarelli, Luca Deininger, Ralf Mikut, Pallavi Panda, Changhuei Yang, Magdalena Zernicka-Goetz, Shi Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 739.532 Tin

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 469334

Recent advances in stem cell-derived embryo models have transformed developmental biology, offering insights into embryogenesis without the constraints of natural embryos. However, variability in their development challenges research standardization. To address this, we use deep learning to enhance the reproducibility of selecting stem cell-derived embryo models. Through live imaging and AI-based models, we classify 900 mouse post-implantation stem cell-derived embryo-like structures (ETiX-embryos) into normal and abnormal categories. Our best-performing model achieves 88% accuracy at 90 h post-cell seeding and 65% accuracy at the initial cell-seeding stage, forecasting developmental trajectories. Our analysis reveals that normally developed ETiX-embryos have higher cell counts and distinct morphological features such as larger size and more compact shape. Perturbation experiments increasing initial cell numbers further supported this finding by improving normal development outcomes. This study demonstrates deep learning's utility in improving embryo model selection and reveals critical features of ETiX-embryo self-organization, advancing consistency in this evolving field.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH