Modeling-based design of adaptive control strategy for the effective preparation of 'Disease X'.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Biao Tang, Sanyi Tang, Hao Wang, Xia Wang, Yanni Xiao, Weike Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 025.3177 Bibliographic analysis and control

Thông tin xuất bản: England : BMC medical informatics and decision making , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 469490

This study aims at exploring a general and adaptive control strategy to confront the rapid evolution of an emerging infectious disease ('Disease X'), drawing lessons from the management of COVID-19 in China. We employ a dynamic model incorporating age structures and vaccination statuses, which is calibrated using epidemic data. We therefore estimate the cumulative infection rate (CIR) during the first epidemic wave of Omicron variant after China relaxed its zero-COVID policy to be 82.9% (95% CI: 82.3%, 83.5%), with a case fatality rate (CFR) of 0.25% (95% CI: 0.248%, 0.253%). We further show that if the zero-COVID policy had been eased in January 2022, the CIR and CFR would have decreased to 81.64% and 0.205%, respectively, due to a higher level of immunity from vaccination. However, if we ease the zero-COVID policy during the circulation of Delta variant from June 2021, the CIR would decrease to 74.06% while the CFR would significantly increase to 1.065%. Therefore, in the face of a 'Disease X', the adaptive strategies should be guided by multiple factors, the 'zero-COVID-like' policy could be a feasible and effective way for the control of a variant with relative low transmissibility. However, we should ease the strategy as the virus matures into a new variant with much higher transmissibility, particularly when the population is at a high level of immunity.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH