Skin cancer represents a major health concern due to its rising incidence and limited treatment options. Current treatments (surgery, chemotherapy, radiotherapy, immunotherapy, and targeted therapy) often entail high costs, patient inconvenience, significant adverse effects, and limited therapeutic efficacy. The search for novel treatment options is also marked by the high capital investment and extensive development involved in the drug discovery process. In response to these challenges, repurposing existing drugs for topical application and optimizing their delivery through nanotechnology could be the answer. This innovative strategy aims to combine the advantages of the known pharmacological background of commonly used drugs to expedite therapeutic development, with nanosystem-based formulations, which among other advantages allow for improved skin permeation and retention and overall higher therapeutic efficacy and safety. The present review provides a critical analysis of repurposed drugs such as doxycycline, itraconazole, niclosamide, simvastatin, leflunomide, metformin, and celecoxib, formulated into different nanosystems, namely, nanoemulsions and nanoemulgels, nanodispersions, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, hybrid lipid-polymer nanoparticles, hybrid electrospun nanofibrous scaffolds, liposomes and liposomal gels, ethosomes and ethosomal gels, and aspasomes, for improved outcomes in the battle against skin cancer. Enhanced antitumor effects on melanoma and nonmelanoma research models are highlighted, with some nanoparticles even showing intrinsic anticancer properties, leading to synergistic effects. The explored research findings highly evidence the potential of these approaches to complement the currently available therapeutic strategies in the hope that these treatments might one day reach the pharmaceutical market.