Research trends in livestock facial identification: a review.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mun-Hye Kang, Sang-Hyon Oh

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Korea (South) : Journal of animal science and technology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 470818

This review examines the application of video processing and convolutional neural network (CNN)-based deep learning for animal face recognition, identification, and re-identification. These technologies are essential for precision livestock farming, addressing challenges in production efficiency, animal welfare, and environmental impact. With advancements in computer technology, livestock monitoring systems have evolved into sensor-based contact methods and video-based non-contact methods. Recent developments in deep learning enable the continuous analysis of accumulated data, automating the monitoring of animal conditions. By integrating video processing with CNN-based deep learning, it is possible to estimate growth, identify individuals, and monitor behavior more effectively. These advancements enhance livestock management systems, leading to improved animal welfare, production outcomes, and sustainability in farming practices.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH