Optimizing colorectal polyp detection and localization: Impact of RGB color adjustment on CNN performance.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jirakorn Jamrasnarodom, Kitsuchart Pasupa, Pises Pisespongsa, Pharuj Rajborirug

Ngôn ngữ: eng

Ký hiệu phân loại: 155.672 Adaptability and adjustment

Thông tin xuất bản: Netherlands : MethodsX , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 472277

Colorectal cancer, arising from adenomatous polyps, is a leading cause of cancer-related mortality, making early detection and removal crucial for preventing cancer progression. Machine learning is increasingly used to enhance polyp detection during colonoscopy, the gold standard for colorectal cancer screening, despite its operator-dependent miss rates. This study explores the impact of RGB color adjustment on Convolutional Neural Network (CNN) models for improving polyp detection and localization in colonoscopic images. Using datasets from Harvard Dataverse for training and internal validation, and LDPolypVideo-Benchmark for external validation, RGB color adjustments were applied, and YOLOv8s was used to develop models. Bayesian optimization identified the best RGB adjustments, with performance assessed using mean average precision (mAP) and F
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH