Offshore impact pile driving is a major source of high level underwater noise that can disturb marine mammal behavior tens of kilometers away. Projects involving pile driving are therefore subject to environmental impact assessments, which include modelling of the spatial extent of the behavioral disturbance. Reliable predictions about behavioral reaction distances require robust estimates of the minimum received levels of noise above which animals are likely to respond. Studies of reactions of harbor porpoises to pile driving noise in the wild and playback in captivity were identified, and reaction thresholds were extracted. Thresholds were weighted with the auditory frequency weighting function for VHF-cetaceans, the functional hearing group to which porpoises belong. The thresholds derived from playback studies to animals in captivity could be frequency weighted directly, whereas thresholds from exposure to noise from actual pile driving activities were weighted via a range-dependent weighting factor. Seven studies of porpoise reactions provided a first estimate of a behavioral reaction threshold as a VHF-weighted received level (Lp,125 ms,VHF) in the range 95-115 dB re 1 μPa.