Topic recognition and refined evolution path analysis of literature in the field of cybersecurity.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lei Jiang, Tianyi Li, Zheng Li, Yanfeng Zhu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : PloS one , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 473329

Using text analysis techniques to identify the research topics of the literature in the field of cybersecurity allows us to sort out the evolution of their research topics and reveal their evolution trends. The paper takes the literature from the Web of Science in the field of cybersecurity research from 2003 to 2022 as its research subject, dividing it into ten stages. It then integrates LDA and Word2vec methods for topic recognition and topic evolution analysis. The combined LDA2vec model can better reflect the correlation and evolution patterns between adjacent stage topics, thereby accurately identifying topic features and constructing topic evolution paths. Furthermore, to comprehensively evaluate the effectiveness of the LDA model in topic evolution analysis, this paper introduces the Dynamic Topic Model (DTM) for comparative analysis. The results indicate that the LDA model demonstrates higher applicability and clarity in topic extraction and evolution path depiction. In the aspect of topic content evolution, research topics within the field of cybersecurity exhibit characteristics of complexity and diversity, with some topics even displaying notable instances of backtracking. Meanwhile, within the realm of cybersecurity, there exists a dynamic equilibrium between technological developments and security threats.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH