Two-dimensional (2D) materials are emerging as a promising platform for epitaxial growth, largely free from the constraints of lattice constant and thermal expansion coefficient mismatches. Among them, transition metal dichalcogenides (TMDs), known for their superior electrical properties, are ideal for ultrathin semiconductor applications. Their unique epitaxial characteristics enable seamless integration with 3D materials, facilitating the development of gate stacks and heterojunction devices. In this regard, developing a process for growing high-quality 3D epitaxial materials before and after the growth of 2D TMDs and understanding the 2D/3D interface are crucial. This study demonstrates the sequential growth of fully epitaxial ZnSe/MoSe